Welding Equipment in Industry

MMAW / Arc Welding Equipment – Features:

saw Archives - Welding Alloys Manufacturers In India

Welding Equipment in Industry

Table of Contents

  • MMAW / Arc Welding Equipment – Features
  • MMAW / Arc Welding Equipment – Advantages
  • Types of Arc Welding Equipment / Power Sources
    • Motor Generator
    • Welding Rectifier
    • Welding Inverter

In fabrication, welding helps to join materials using heat to melt the parts together. Useful with metals and thermoplastics, this process typically uses a filler material to the weld pool of molten material, helping to make the joint stronger than the base material. Pressure is used in the process along with heat in welding, while a shield protects the metals from being oxidized in the process.

The most heat sources for joining material using a fusion welding process are listed below:

Fusion welding sources

We have five types of Arc welding Equipment/power sources. These are AC transformer; DC rectifier; AC/DC transformer rectifier, DC generator, and inverter.

MMAW / Arc Welding Equipment – Features

  • Portable & Versatile equipment
  • Requires practiced skills
  • Applicable to a wide range of materials, joints, positions
  • About 1kg per hour of weld deposited
  • Properties can be excellent
  • Benchmark process

MMAW / Arc Welding Equipment – Advantages

  • This is the simplest of all Arc welding processes.
  • Equipment is portable
  • Economical Cost of Equipment
  • Variety of applications & wide availability of electrodes
  • The range of metals & their alloys can be welded
  • Welding in all Positions
  • Welding can be Indoors or Outdoors 
  • Welding cable can be extended to long distances when compared to other processes

Types of Arc Welding Equipment / Power Sources:

Arc welding power sources

A welding transformer is basically a step-down transformer that brings down the source voltage to weldable voltage. This is simple Arc welding Equipment.

Motor Generator 

Motor Generator is also an Arc welding Equipment, which utilizes input power to rotate the generator through an induction motor. This kinetic energy is converted to electrical energy by carbon brushes fitted in the commuter, generating DC current is generated supplying constant power to the process.

In a Diesel Generator, diesel is used as fuel to run the motor to generate electricity; this is widely used in on-site jobs for Arc welding applications 

Welding Rectifier

Welding rectifiers are essentially transformers with an electrical device as a rectifier which changes AC to DC. Rectifier basically consists of Silicon diodes, which ensure the flow of current in one direction giving DC output. This is most commonly used with Arc welding equipment.

Welding Inverter

This latest technology power source is the most popular Arc Welding equipment today. A welding inverter is a power block, controlled by software, which offers the required static and dynamic characteristics needed for a specific welding process. It takes AC input and converts it into DC after step-down & then converts it further into high-frequency AC & then again converts it to DC – finally offering a DC output. When using an inverter power source, a user gains all the advantages of thyristor control. Additionally, they get superior efficiency, power savings, better performance, and quality of welding.

We at Ador Fontech offer the best “Make in India” solutions with Fontech Tornado brand Welding Power sources. We offer both robust Thyristor-controlled machines as well as Power saving Inverter machines for all welding processes like Manual Metal Arc welding, TIG, MIG/MAG, and SAW. Once again, we reiterate our total commitment to total solutions in welding with this range of equipment, catering to the complete requirements of customers. 

Reclaim. Do not Replace.


Also read:- Hypertherm Life Expectancy of Consumables

Key Differences Between SMAW and SAW Welding

Table of Contents

  • An Introduction to Shielded Metal Arc Welding (SMAW) process
    • Heat source
    • Energy Consumption
  • An Introduction to Submerged Arc Welding (SAW) process
  • Advantages with the SMAW Process
  • Limitations of the SMAW process
  • Advantages with the SAW Process
  • Limitations of the SAW process

The basic difference between the two processes, SMAW and SAW welding, is this. In the SMAW process, the flux-coated electrode helps to shield the welding process from any interaction with the atmosphere. In the SAW process, an external flux delivered at the arcing area acts as a shield. So, the welding happens underneath the powder flux fed by a delivery system. This is the primary difference between SAW & SMAW processes. Let us get introduced to both processes.


An Introduction to Shielded Metal Arc Welding (SMAW) process

In SMAW or MMAW (Manual Metal Arc Welding), the arc is established between Parent Metal shielded (flux-coated) welding electrodes using electrical energy to deposit weld metal. 

Heat source: Arc between metal and a flux-coated electrode (1.6- 8 mm diameter)   

Energy Consumption: 30 – 400 Amps –depending on the size of the electrode in general, even though there are welding machines that use up to 600 Amps. AC or DC SMAW Operation Power consumption 1-12 KW

An Introduction to Submerged Arc Welding (SAW) process

 In the SAW Process, as the name signifies, the welding happens submerged beneath the flux. SAW process also employs a welding consumable, usually a wire. An arc is established between the welding wire and base metal and welding happens underneath the metal powder of flux, which shields the arc from the atmosphere.


Heat source: Arc between a wire and base metal 

Current Range: 200 Amps -1200 Amps

DC operation                       

Power Consumption-35-56 KVA

  • Power source
  • Welding head and control box
  • Welding head travel
  • Flux recovery system (optional)

Let us take a look at the process advantages & limitations of both SMAW and SAW processes.

Advantages with the SMAW Process:

  • This is the simplest of all Arc welding processes.
  • Equipment is portable
  • Cost of equipment is economical
  • Variety of applications & wide range of electrodes available
  • A range of metals & their alloys can be welded
  • Welding can be done in all positions
  • Welding can happen indoors & outdoors 
  • Welding cable can be extended to long distances in comparison to the SAW process

Limitations of the SMAW process:

  • Low productivity as in a 10-minute span, welding happens only for 6 minutes 
  • The process also involves the frequent change of welding electrode
  • Moisture from flux coatings can create weld-related problems
  • Safety problems like arc strike, stray current & electric shock risks
  • Absolutely manual process – hence called Manual Metal Arc Welding 

Advantages with the SAW Process:

  • High productivity up to 2 to 10 kg per hour.
  • Speed almost up to 2m/min
  • Can be easily automated for even higher productivity.

Limitations of the SAW process:

  • Bulky, expensive, and heavy equipment
  • Flat and horizontal positions only
  • Thicker sections (6mm and above)
  • Mostly ferrous materials (also Ni alloys)

Given these essential differences between MMAW/SMAW and SAW processes and their respective advantages and limitations, a considered choice can be made between these processes.


We, at Ador Fontech, offer the best “Make in India” solutions with Fontech Tornado brand welding machines for both SMAW and SAW processes. Once again, we reiterate our commitment to total solutions in welding to the complete satisfaction of customers, with this range of equipment.  


Also read:- Resolve Wear Factors